Webinar on 29th September 2020

Reallabor Westküste 100 Complete sector coupling: Renewable hydrogen and decarbonisation on an industrial scale

Presentation for IEA Experts' Group on R&D Priority-setting and Evaluation (ECRD)

Klemens Kaar Project Development Manager, Hydrogen Portfolio Development & Strategy

Let's create a world that runs entirely on green energy

Ørsted develops energy systems that are green, independent and economically viable

Under construction Installed

Segments

Offshore Hydrogen is part of Offshore

- Global leader in offshore wind
- Develop, construct, own and operate offshore wind farms
- Ambition of 15 GW installed capacity by 2025

- US onshore wind portfolio
- Develop, construct, own and operate onshore wind farms
- Energy storage solutions and solar

- Route-to-market for own and customers' generation portfolio
- Market trading operations
- Convert CHPs to sustainable biomass and phase out coal by 2023
- Recent divestment of Radius, B2C and City Light

Ørsted sees renewable hydrogen as a potential way to decarbonise areas that are currently not addressed and difficult to electrify directly.

Henrik Poulsen, CEO Ørsted

Offshore wind power favours stable renewable hydrogen production and enables industrial scale up

Average annual full load hours (FLH) in Germany [MWh / MW = h]

High Full Load Hours ³

• German offshore wind parks provide significantly higher full load hours than onshore wind or PV.

Scalability

- Large offshore wind power areas available
- Less height (-> size) limitation of wind turbines offshore
 - ✓ Hornsea 1: 1.2 GW since 2019
 - ✓ Hornsea 2: 1.4 GW in 2022
 - ✓ Borkum Riffgrund 3: 0.9 GW in 2024/25

1. BDEW (2018): https://www.bdew.de/media/documents/Jahresvolllaststunden-2010_2017_o_online_jaehrlich_Ba_26042018.pdf

2. Bundesnetzagentur (2018): Genehmigung des Szenariorahmens 2019-2030, page 150.

5 3. FLH [h] = wind park average annual power production [MWh] divided by its rated power [MW]

450 GW Offshore Wind Power potential in Europe ¹

6

1 The study <u>'Our energy, our future' (Wind Europe, 2019)</u> presents, how 450GW installed Offshore Wind Capacity can be reached. 450 GW Offshore Wind Capacity is part of a scenario of the EU Commission to reach carbon neutrality by 2050.

WESTKÜSTE100

Förderkennzeichen 03EWR009

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Hydrogen Region West Coast

Our starting point and our motivation

Unique periphery in Heide and Schleswig-Holstein:

- GW-scale offshore wind & multi MW-scale onshore wind power
- O2-offtake & carbon capture at cement production Lägerdorf
- Refining expertise in Heide & salt caverns for possible on-site storage of H2
- Demand for sustainable avaiation fuel at airport Hamburg in close proximity

WESTKÜSTE 100: Green hydrogen and decarbonization on an industrial scale

Complete sector coupling

Green hydrogen and decarbonisation on an industrial scale

- Represents complete value chain through industrial partnerships - 10 companies in consortium
- Realisation of direct sector coupling: Renewable electricity production, fuel production & distribution and cement production
- 3 partner JV ,H2 Westküste' to finance, design, build, integrate, operate and optimize a dynamically run first fo a kind **30 MW electrolysis** system. Also: H2-cavern storage, a local H2 infrastructure and 2 FEED studies -> laying the technical, commercial and regulatory foundations for the 700 MW scenario "Vision 2025+"

Ð OGE

Development path for scaling up

WESTKÜSTE100 - Fly, Build and Heat more sustainably!

Where we are

Framework conditions and location factors

- Technology
 - > Various technologies for electrolysis systems are available on the market
 - > Size of ~ 30 MW as the next scaling step
 - > Complementary consortium has co-funding secured
- Location "Westküste" in Schleswig-Holstein
 - > High potential for the use of wind energy for sector coupling
 - > Commitment from all actors involved (economy & politics)

Regulatory framework (extract)

- RED II and delegated act on electricity procurement
 - > REDII to be implemented into national legislation to give renewable hydrogen a value when used in the production of fuels.
 - > Requirements for electricity to produce renewable H2 to be developed (del. act)
 - > Germany can use the EU Council Presidency to accelerate the process
- Fees and levies for electrical power (primarily EEG surcharge)
 - It is likely that EEG levy will be reduced by extending a legislation for energy intensi industries to (renewable) hydrogen, but important details are still unclear
- \rightarrow Implementation of ideas from the German National Hydrogen Strategy

Legal uncertainty need to be removed to incentivise investments in renewable hydrogen

Questions?

Klemens Kaar Project Development Manager, Hydrogen Portfolio Development & Strategy kleka@orsted.co.uk +44 791 750 5415

